skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Liu, Jianqiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding the different workloaddependent factors that impact the latency or reliability of a storage system is essential for SLA satisfaction and fair resource provisioning. However, due to the volatility of system behavior under multiple workloads, determining even the number of concurrent types of workload functions, a necessary precursor to workload separation, is an unsolved problem in the general case. We introduce CENSUS, a novel classification framework that combines time-series analysis with gradient boosting to identify the number of functional workloads in a shared storage system by projecting workload traces into a high-dimensional feature representation space. We show that CENSUS can distinguish the number of interleaved workloads in a real-world trace segment with up to 95% accuracy, leading to a decrement of the mean square error to as little as 5% compared to the 
    more » « less